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Dispersive (b4 wave propagation 
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Department of Theoretical Physics, University of Madras, Madras-600025, India 

Received 27 November 1974 

Abstract. Whitham’s theory of nonlinear water waves is applied to a nonlinear c-number 
field (A@ model) to investigate the propagation characteristics of the field in the plane- 
wave modes. A system of first-order partial differential equations is set up for the assumed 
slow variations of the wave parameters corresponding to each of the different types of 
Jacobian elliptic function wave modes. By the method of characteristics it is shown that 
the system is hyperbolic in two of the regimes, indicating that the disturbances in the wave 
parameters propagate with two different amplitude-dependent velocities. In one of the 
regimes corresponding to b e 0 both of these velocities are tachyonic. These group velocities 
and the corresponding Riemann invariant forms, which are functions constant along 
characteristics, are calculated. In two other regimes the system of partial differential 
equations is elliptic, showing that the wave modes are unstable against formation of 
inhomogeneities in the wave parameters. 

1. Introduction 

Non-perturbative techniques for handling problems in quantum field theory (Blok- 
hinstsev and Barbashov 1972) are currently drawing wide attention. One reason for 
this is that the perturbation theory in terms of the coupling parameters is known to 
lead often to divergence difficulties such as in the anharmonic oscillator and kP4 models 
(Bender and Wu 1969, Jaffe 1965). Owing to the complexity of the quantum field prob- 
lems, one often considers simpler analogues for which non-perturbative solutions are 
possible (Sarkar 1973 for example), and in this way one hopes to gain some feeling for 
the exact properties of the quantum field. To this end one possibility is to consider the 
classical counterpart of quantum field problems. It has been observed recently that 
classical fields in the presence of arbitrary external sources are closely related to the 
generating functionals of the tree graph approximation of the corresponding quantum 
field (Boulware and Brown 1968, Duff 1973). There have also been attempts to reduce 
the solutions of quantum field equations for scalar bosons to those of the corresponding 
c-number field equation by introducing a suitable integral representation for the 
quantum field (Rackzka 1974). However there are no known ways of obtaining general 
solutions, even for the classical nonlinear field equations, since the theory of nonlinear 
partial differential equations is still in its nascent state at present. Oflate various existence 
studies are appearing in the mathematical literature (for example Segal 1966, Morawetz 
and Strauss 1972). These are mainly conceptual in nature as they do not provide methods 
for obtaining the solutions, yet they give some clues as to the nature of the solutions. 
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In the absence of exact general solutions to nonlinear partial differential equations?, 
one of the alternatives open at present is to pay attention to particular types of solutions. 
The one important class of solutions that has been extensively investigated for a variety 
of nonlinear field equations is the class of localized particle-like solutions both time- 
dependent and -independent (Anderson and Derrick 1970 for example). However, 
apart from the conceptual problems involved in such an interpretation, there is the diffi- 
culty that solutions of even this limited class are not easily obtainable. 

Another important class of particular solutions which one may consider is the wave- 
like elementary excitations or travelling plane periodic wave solutions of the form 

4(x, t )  = @(A . x - or) 

with 

w = o ( k ,  Ai) 

where Ai  are integration constants. Various existence theorems for this and other types 
of periodic solutions to a given equation of the form 

(taken for simplicity in 1 + 1 space-time dimensions) have been given recently (Hale 
1967, Hall 1970). It seems to us that solutions of the kind (1) have a fundamental impor- 
tance even in the context of quantum field theories. For example, if classical wave modes 
increase without limit as certain finite values of the amplitude are approached (this 
happens in the j.44 model considered by Mathews and Lakshmanan 1973), such 
phenomena cannot but have repercussions on the corresponding quantum field theory. 

At the classical level itself there have been important new developments in the 
theory of nonlinear wave propagation following the suggestion of a new method by 
Whitham (1965a, b). His essential observation is that even though exact general solu- 
tions to nonlinear wave equations are out of the question for the present, plane-wave 
solutions of the form (1) may always be given, at least in principle, for most of the equa- 
tions of interest, such as the Korteweg-de Vries equation (Korteweg and de Vries 1895). 
Whitham shows that for a more general category of solutions, consisting of those which 
can be approximated by plane waves locally (so that they can be represented by (1) with 
k ,  Ai  replaced by the slowly varying functions k(x, r), Ai(x, t) which vary little over several 
wavelengths), the temporal behaviour can be deduced from consideration of a suitable 
set of conservation equations. The theory provides a natural extension of the group 
velocity concept to nonlinear problems. There are then possibilities of studying along 
these lines certain typical nonlinear field equations of current interest in quantum field 
theory. 

The purpose of the present paper is to investigate the propagation characteristics 
of inhomogeneities of plane-wave modes of the classical jb44 model, characterized by 
the equation of motion 

?’$(x, t)/W - V’4 + m‘4 + j.43 = 0. (3) 

t It might be of interest to note Einstein’s view regarding the role of classical nonlinear field equations in 
describing atomic and quantum structure of reality. He observes that nobody really knows anything about 
this at present, as there is no way of obtaining exact general solutions to classical nonlinear field equations 
(Einstein 1966). 
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Various studies in recent mathematical literature indicate the existence of a classical 
nonlinear scattering operator S, and show that the solutions are asymptotic in the energy 
norm to solutions of the linear equation, ie 1 = 0 as t --t f s o  (Morawetz and Strauss 
1973) with m2, i. > 0. However, as far as analytic solutions are concerned, it appears 
that the only type of solution we can obtain explicitly at present is a plane-wave solution 
of the form (1). A systematic study and classification of non-singular wave solutions 
of the type (1) to equation (3) was made recently (Mathews and Lakshmanan 1973, 
hereafter referred to as 1). Complete knowledge of the plane-wave solutions enables 
us to apply Whitham’s theory to our system and obtain information about the propa- 
gation of wave patterns described by more general solutions of the equation, such as 
groups of waves wherein the propagation constant k and the amplitude A vary slowly 
with position and time. In an earlier paper (Lakshmanan 1974, hereafter referred 
to as 11) we have made such an analysis for a model with non-polynomial interaction 
(Mathews and Lakshmanan 1974), where an outline of Whitham’s theory has also been 
given. 

Starting from the appropriate conservation equations we obtain the system of 
partial differential equations satisfied by the wave parameters k and A of the 144 model 
( $ 2 ) .  It turns out that this system of equations may be either hyperbolic or elliptic 
depending on the particular regime under consideration. In fact two of the regimes 
for I. < 0 lead to elliptic systems, indicating unstable propagation of the wave modes 
with respect to formation of inhomogeneities in the wave parameters. In the cases where 
the equations are hyperbolic we have proceeded to find the ‘group velocities’ of propa- 
gation of wave patterns and also obtained Riemann invariant forms (which are functions 
constant along characteristics). Very recently Hayes (1973) has suggested methods 
to investigate elliptic cases. However we have not considered this problem in this 
paper. 

The main results of the paper are as follows: we find in 5 3 that for 1 > 0 the assumed 
slow variations in the wave parameters of modes with o2 - k 2  > 0 propagate with two 
different amplitude-dependent group velocities, as in the derivatively coupled non- 
polynomial case considered earlier by us (11). In $ 4  we show that when 1 < 0 there is 
no propagation of the inhomogeneities of the wave parameters of the sn wave mode 
with o2 - k 2  > 0 and of the dn wave mode which is ‘tachyonic’ (0’- k 2  < 0). How- 
ever, for the ‘tachyonic’ type wave mode (which also exists when i. < 0 and must have 
an amplitude exceeding the upper limit (2m2/14)’’2 of the dn type waves) inhomogeneities 
in the wave parameters propagate with two different tachyonic group velocities. 

2. Locally plane-wave solutions; partial differential equations for the wave parameters 

The appropriate averaged conservation equations (along the lines of Whitham’s theory 
discussed in 11) that one uses here for the Ad4 case are 

and 
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The quantities 2, 
are 

and 9 to be substituted in the averaged conservation equations (4) 

and 

Here I is the wavelength and 4 is to be substituted in terms of the various wave solutions 
+(x, t )  = f(kx-wt) (in 1 + 1 space-time dimensions) that we have discussed in I (see 
table I). One may observe that equations (4) are nothing but the energy-momentum 
conservation equation restricted to 1 + 1 dimensions (see 11). In I we have distinguished 
four cases of interest : 

(i) Case 1 : A > 0, o2 - k 2  > 0, cn type solution 
(ii) Case 2: ,i < 0, o2 - k 2  > 0, sn type solution 

(0 < IAI d (m2/1E.1)”2) 

(iii) Case 3:  EL < 0, o2 - k 2  < 0, dn type solution 

((m2/lAO”2 f IAl d (2m2/14)”2) 

(iv) Case 4:  E. < 0, w 2 -  k 2  < 0, cn type solution 

((2m2/1i1)”2 < I A ~  6 E). 

By inspection of equations (17) and (18) of I one can see that the averaged values of e and are 

where a and p are given by 

a = i A 2 m 2 ( 1  + EbA2/2m2) ( 7 4  

p1 = p 4 =  1 +  --j 1-- (;?) ( E) 
pz = 2 + ( 3 (  1-;) 

p 3 = 2  ( 1+- 2 )  + is?)( 7 I - - .  E) 
Here K and E are the complete elliptic integrals of the first and second kind respectively. 
One may also evaluate $ in a similar manner. We find that 
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Substituting these expressions in the averaged conservation equations (4), we obtain the 
set of approximate conservation equations for each of the four cases in the form : 

L ,  = aikr + b,k, + c,A, + d,A, = 0 

L 2  z bik,  + aikx + diA,  + eiAx = 0 

where the coefficients a , ,  b , ,  c,, d , ,  e,  ( i  = 1,  2, 3,4) are functions of the parameters k 
and A.  Their actual forms are given at the appropriate places below as we analyse the 
four different cases separately. 

3. Case 1:k > O  and d - k 2  > O  

This case corresponds to the cn solutions with modulus ).I = [E.A2/2(m2 +i .A2)]1 '2 and 
characterized by the dispersion relation w 2  - k2  = m 2  + ;.A2. The various coefficients 
a,.  b , ,  c 1 .  d , ,  e, in equation (9)  are obtained by substituting equations (6) and (8) with (7) 
in the conservation equations. They are 

a ,  = 2k,  ( l o a )  

( l o b )  

(104 

( 1 0 4  

(IOe) 

b ,  = 0) + k2/", 

c, = [ 3 ( m 2  + ;.A2) + 2k2(  1 - Q , ) ] x ;  ' % A .  

d ,  = [ 2 0 k (  1 - Q,)x;  + k/w]i,A, 

e, = [ -3(m2+i .A2)+2xl  +20j2(1 - - l 2 , ) ] ~ ~ ' j . A  

where 

0 =- m4 ["-( 2(m2 + L A 2 )  E ' ) ]  
1 RA2 ( m 2 + R A 2 )  K * +(2m2+I .A2)  K2 

and 

z 1  = 2m2(1 - E / K )  + >.A2 

In deriving the coefficients of the system of partial differential equations (9) we have 
used the following results on the elliptic functions: 

dK (E - / I ' ~ K )  _ -  - dE E - K  - 
dv ).I ' d).I r7rl'2 

so 

Before proceeding to the determination of the nature of the partial differential 
equations (9) we verify that the approximate conservation equations (9) also imply the 
conservation of waves. We first multiply equation ( 9 a )  by k/oi and subtract from (9b) 
to obtain 

[ b ,  - a l : )  k , +  ( a ,  - -b1k)  k,+ ( d l  - e , ; ) A , +  ( e ,  - , , : ) A ,  = 0. (12) 



Dispersive 44 \\$are propagation 793 

On substituting the actual values of coefficients a ,,. . . , e , ,  (9) becomes 

k, +-k, + {2( 1 - 52,) + [x, - 3(m2 + A A 2 ) ] ( m 2  + AA’)-’)RkA%; ‘ A ,  
k 
ill 

(13) which may be simplified to 

k r + - k , + - 7  k (1-2?”,[ 7 2 - ( I - -  E)] A ,  

A ?  ’ { ”  ’[ ’ ( :i Y]} 
k 

A ?  

+- 7 ( 1 - 2 ?  ) - 1-- +- A ,  = 0. 

Using the second of the formulae given in (1 la)  one may verify that equation (14) is 
exactly equivalent to 

2r (4:) - +s, (G) - = 0. 

Since k/4K is the density of waves (or wavenumber) and w/4K the flux of the waves (or 
frequency), we see that equation (1 5) verifies the conservation of the number of waves. 

We now turn to the investigation of the nature of system (9) for case 1. The nature 
of the partial differential equations is determined by the nature of the roots of the charac- 
teristic equation (Courant and Hilbert 1962, p 172, Jeffrey and Taniuti 1964): 

b1- T U 1  d ,  - T C I  Q = l  ~ = 0. (16) 
a,  - r b ,  e,  - r d ,  

On actual substitution of the relevant coefficients from equation (10) this becomes, 
after some simplification, 

{ ( m 2  + b12) [3( 2k2 f m2 + AA2) - 2k2(  1 - n , ) ]  - 2k2X 1 5’ - 4kw[(m2 + 2A2)(2 + 52,) - X 1 ] T  

+ 3 ( w 2 + k 2 ) ( m 2  +AA2)-2w2x, -2w2(m2+AA2)(1 -52,) = 0. (17) 

The solution of this quadratic equation gives the characteristic roots as 

2kw[(m2 +IA2)(2+R,)-x,]+_(m2 +llA2)3’2[2~1 - (m2  + A A 2 ) ( 1  +2i2,)]1’2,/3 
(m2 +E.A2)[2k2(2 +Cl,) + 3(m2 +AA2)] - 2k2x, T =  . (18) 

These roots will be real or complex according as 2x,  - ( m 2  +AA2)(1 +252,) is positive 
or negative. Examination of (lOf) and (log) shows that in the limit AA2 -+ O ( q  -+ 0),  
n, -+ -+  and x I  -+ 0, while if AA2 -+ x, 52, -+ O(q -+ 1 /J2 )  and x ,  -+ AA2(=  m). 
Thus the quantity 2x1 - ( m 2  + AA2)( 1 + 252,) tends monotonically from zero to AA2( = cc) 
as q2  varies from zero to a half, showing that it is always positive definite. Therefore 
system (9) for case 1 is hyperbolic in nature. and equation (18) gives the corresponding 
propagation velocities of inhomogeneities in the parameters k and A. We also note that 
in the limit A -+ 0. 

T -+ klw (1% 
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which is the usual group velocity of linear dispersive waves. When m2 = 0 or 2 + m, 

T,Z = + ( 2 w k  & AA2J3)/(2k2 + 3 i A 2 ) .  (20) 

In all three equations (18H20), I T I  is always less than unity. We also note that the two 
separate propagation velocity expressions (18) become the same in the A = 0 limit, 
while in the limit m2 = 0 there is again propagation with two different amplitude- 
dependent velocities. This phenomenon is absent in the corresponding limit of the model 
with non-polynomial interaction (11) because in that case there is no dispersion in the 
m2 = 0 limit. 

To obtain the characteristic form of ( 9 )  for case 1 (wherein the differentiation is 
explicitly along the characteristic directions), we proceed as below t. We consider first 
the non-trivial solutions of the equation 

= o  

where T is taken to have either of the values of (18) .  Evidently 

r l  u , - r b ,  e , - s d ,  
r2 b l - r u ,  d , - r c , '  
- - -___ _ -  

With either of these values for r , / r 2  the linear combination r , L ,  + r 2 L 2  of equations (9) 
involves differentiation of k and A in the characteristic directions only. Accordingly 
we have the system of equations (with T = T ~ ,  i = 1 , 2 )  : 

O n  substituting ( 2 2 )  for r 1 / r 2  this becomes 

which on simplification with the aid of equation (10) becomes 

on the characteristic curves 

C +  logi E T~ = dx/dt i =  1,2 (24b)  

where si  are given by equation (18). To obtain the Riemann invariant forms we define 
U = k / w  so that 

AAk 1. Ak w3 
A ,  = A ,  = m2 + RA2 k r - m 2 + i A 2  m2+;cA2 k"-m2+E.A2 

t We follow in part the procedure of Courant and Hilbert (1962, p 429) on the isentropic flow of compressible 
fluids. 
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Then the characteristic form (24) may be re-expressed as a quadrature in the form 

the characteristic curves being given by 

2v[(m2 + RA2)(2 +al)- xl] 
-+(l- U2)(m2+AAZ)1’2[2~1-(mZ+~.A2)(1 +2Rl)]”’J3~ (26b) c+ - :Ti  = 

(m2 + iA2)[2U2(2 + R I )  + 3( 1 - U’)] - 2U’xI 

The Riemannian invariant forms are to be obtained by integration of(26a). In particular, 
i f  m2 = 0 the characteristic curves are 

and (26a) reduces to 

d U  J’3 
+ - - A  = 0. 

1-U’- A 

Then the corresponding Riemann invariants are obtained by integration of (27a) : 

+ U A + J ~  = constant 
I n  [[E) ] 

corresponding to the + and - signs respectively. I f  we call 

l n [ ( s ) A ~ 3 ]  = r and In[ (E) A.-..] = S  

then we have 

(29) 

Expressions (29) may then be used to solve the initial value problem. For this purpose 
we introduce r and s as parameters instead of U and A. In terms of r and s the charac- 
teristic equations dx/dt = s i  may be given in the form? : 

s, = 51 I,, xr = s2tr. (31) 

This may then be reduced (Courant and Friedrichs 1948) to a single second-order linear 
partial differential equation of the form : 

(71 - s 2 ) t r s f ( s l ) r t . , - ( T ~ ) s t r  = 0. ( 3 2 ~ )  

t This transformation is valid as  long as the Jacobian d(x, t)/d(r, s) 
we have assumed here. For details see Courant and Hilbert (1962, p 492). 

x,t, - XJ, 1s different from zero, which 
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On simplification this becomes 

~ r s +  

er + s + 4 + s V 2  

t ,  = 0. 
er + S  + 4 + s ) : 2  + 1 - ( ( 2  + J 3 )  er+s  + 2 e(r+s'i2 

The substitution of the solutions of this equation for t into equation ( 3 1 )  gives x in 
terms of r and s. Inverting the solutions we will obtain r and s (which in turn means 
k and A )  in terms of x and t .  Thus the initial value problem may be solved in principle 
by solving this linear differential equation. 

4. The case A < 0 

4.1.  Normal solutions (w2 - k 2  > 0)  

The solution pertaining to  this case is 4 = A m ( &  . x - ut + 0) with u2 - k 2  = m 2  - li.JA2/2 
and q 2  = li.JA2/(2m2 - ( i / A 2 ) .  The corresponding coefficients a, b, c, d, e in the partial 
differential equations (9) are 

where 

and 

As before, we consider the roots r i  of the characteristic equation 

b2 - T U ,  d ,  - T C ~  

a, - rb ,  e ,  - rd ,  

namely 

The quantity under the square root sign in the numerator turns out to be negative: 

a j (e ,  - c,)~ -4(a2d2 - b,c , ) (b ,  C J ~ - -  a ,d2)  

= 3u2 - k 2 ) 2 ( m 2  - l i lA2)[  - 3 m 2  - l i I A 2 ) - ~ ,  +(2m2 - l i lJAZ)(l  + Q2)] /u2x:  

< 0.  (36)  



Dispersive 44 waue propagation 797 

This is because the function R, of equation (33e)  varies from7 -5  to - 00 as ILIAZ 
varies from zero to its maximum allowed value m 2 ,  A study of (36)  shows that as long 
as (2m2 - IAIAZ)(l +a,) is positive, the other two terms inside the square bracket of 
(36)  dominate (and x 2  2 0 in this range). Thus the above expression is always negative 
for the whole range 0 < )AI < (m2/lA1)”2. Hence the roots (35) are complex, making 
the corresponding system of partial differential equations elliptic. Therefore there is 
no propagation of the inhomogeneities in this case. 

4.2. Tachyonic wave modes (az - k Z  < 0) 

In this region we have two types of solution : (i) case 3 : dn type wave modes with ampli- 
tudes in the range (mz/lLl)l’z < ~ A ~ ( 2 m z / ~ A ~ ) 1 ~ z ;  and (ii) case 4:  cn type waves having 
amplitudes A > (2m2/1A1)”’. 

4.2.1. Case 3 : dn wave modes. The dispersion relation for this case is U’ - k Z  = - 1 4 A 2 / 2  
and the modulus of the dn function is q = [2((A1AZ -m2)/1A1A2]1iZ. The corresponding 
coefficients a , ,  . . . , e ,  of the partial differential equations (9) are given by 

and 

The roots of the characteristic equation are now given by expression (35)  with a , ,  b,, 

t To determine the behaviour of0 as IYA2 + m2 (or q2  + 1 )  in the expression 

we should determine the behaviour of q’K(q) (where q” = 1 - q 2 )  in the limit q 2  + 1 .  (We note that E + I 
as q + 1). This may be done with the aid of the following expansion for the complete elliptic integral K 
(Gradshteyn and Ryzhik 1965): 

so 

lim q’K(q)  + q ’ ( h  4-  In q’) = Iim - q’ In q’ = 0. 
‘I- 1 ‘I’-O 

Therefore R, + - CO. 
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c , ,  d , ,  e ,  changed to u 3 ,  b , ,  c,, d , ,  e3  respectively. We find that the term 

&e3 - - 4(a,d, - b,c,)(b,e,  - a d , )  
= 3 ( 0 2 - k 2 ) 2 ( ) L J A 2 - m 2 ) [ - ~ l ; 1 1 A 2 - m 2 ) + ~ 3 + l ; 1 1 A 2 ( 1  +R3)]/w2~: G 0 (38) 

so that T~ are complex. Thus the system of partial differential equations (9) is again 
elliptic and there is no stable propagation of inhomogeneities in this case. 

4.2.2. cn w m e  modes (rachyonic). The dispersion formula here (case 4) is 

w 2 - k 2  = -(IE.IA2-m2) (ILIA’ > 2m2) 

and the modulus of the elliptic function is q = [/LlA2/2(l;11A2 - m 2 ) ] 1 ’ 2 .  The coefficients 
in the corresponding partial differential equations (9) are of the same form as those of 
case 1 considered in $ 2 ;  but now the modulus q will vary from q = 1 at ILIA2 = 2m2 
to q = 1/J2 as ILIA2 --* cc. The details are then similar to $ 3 and we may write down the 
characteristic roots as 

2kw[(m2 - I L ( A ~ ) ( ~  +R,)-x4] f ( m 2  

(39) 
x [2x4 - (m2 - IiIA2)(1 + 2R4)]’/’J3 

T =  
( m 2 - I E . I ~ 2 ) [ 2 k 2 ( 2 + R , ) + 3 ( m 2  -1iIA2)]-2k2~, 

where 

2(I&i2 - m 2 )  E , ) ]  * +(,L,A2-2m2) K2 
and 

I / 

Figure 1. The velocities of propagation of the ‘disturbance’ waves in the case of a 
with m2 = 0 (for both I > 0 and I < 0). 

field 
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As ILIA2 varies from 2m2 to 30, x4 varies from 2m2 to  -IAIA2 while 0, varies from - 30 

to 2m2. Then the quantity ([2x4-(m2-lAlA2)(1 +2R4)](m2-IAIA2)}”2 will always be 
positive definite for IAlA2 > 2m2. One can then proceed to the determination of charac- 
teristic forms and Riemann invariants as in 6 3 and arrive at  an equation similar to 
equation (26). The interesting point to  notice is that the magnitude of the propagation 
velocities given by (39) is always greater than unity showing that the inhomogeneities 
propagate with tachyonic velocities. To  see this more clearly we can take the m2 = 0 
limit of (39) which is 

(41) ~,,,z=o = ( 2 ~ k f  lAlp2J3)/(2k2 - 31A1A2), w = ( k 2  - lAlA2)”2. 

One may verify that in (39) both the velocities are tachyonic. Considering 

T~ = ( 2 0 k  + JAIA2J3)/(2k2 - 31A1A2), 

it varies from one to infinity as JAIA2 varies from zero to f k 2  and from - oc to - 43 
as lAlA2 varies from i k 2  to k2 (which is the maximum allowed value of ILIA2). The 
other expression z2 = ( 2 ~ k  - lAlA2J3)/(2k2 - 3)A)A2) varies monotonically from one 
to J 3  as IA(A2 varies from zero to infinity. These facts are illustrated in figure 1. 
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